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1Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies,
PO Box 3640, 76021 Karlsruhe, Germany

2Forschungszentrum Karlsruhe, Institute for Reactor Safety, PO Box 3640, 76021 Karlsruhe, Germany

(Received 27 January 2004 and in revised form 6 October 2004)

Results of direct numerical simulation (DNS) for Rayleigh–Bénard convection for the
Prandtl number Pr = 0.025 are used to show some peculiarities of turbulent natural
convection for low-Prandtl-number fluids. Simulations for this flow at sufficiently
large Rayleigh numbers became feasible only recently because this flow requires the
resolution of very small velocity scales and the recording of long-wave structures for
the slow changes in the convective temperature field. The results are used to analyse
standard turbulent heat flux models. The analysis for a model based on the Reynolds
analogy indicates strong deficiencies of such turbulent heat flux models for low-
Prandtl-number fluids. Turbulence models for buoyant flows which are not based on
the Reynolds analogy include also the transport equation for the temperature variance
θ2. Detailed analysis of this transport equation and of the transport equation for the
temperature variance dissipation rate is performed using DNS data. The results
show the relevance of the turbulent diffusion terms and strong quantitative and
qualitative deficiencies of standard models for turbulent diffusion of the temperature
variance θ2 and for the turbulent diffusion of the temperature variance dissipation
rate εθ . Using the two-point correlation technique, statistical turbulence models for
the turbulent diffusion of the temperature variance and for the turbulent diffusion of
the temperature variance dissipation rate are proposed. These new models explicitly
consider the molecular fluid properties. The new models reproduce the DNS results
for Pr= 0.025 and Pr= 0.71 sufficiently well.

1. Introduction
Owing to the specific properties of many low-Prandtl-number fluids such as liquid

metals, the experimental thermal and hydraulic investigations at the present stage are
rather limited. For example, we have currently no sensors for accurate measurements
of the small-scale velocity fluctuations, which are needed to determine accurately the
local turbulent heat fluxes in liquid lead–bismuth. Therefore, numerical investigations
by means of direct numerical simulation (DNS) are necessary in order to understand
the physical mechanisms of turbulent convection in liquid metals and to gain some
of the required turbulence data.

Most of the common turbulent heat flux models use the simple concept of the
Reynolds analogy based on a turbulent Prandtl number (Prt ) to model the turbulent
heat transfer. This concept is, in general, problematic as Prt depends in an unknown
manner on many flow and fluid parameters (see e.g. Kays 1994). To obtain more
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realistic predictions for the convective turbulent heat transfer, models are required,
which are based on the transport equations for the turbulent heat flux and for
the temperature variance. The buoyancy term in the heat flux equations includes the
temperature variance θ2. In analogy to the turbulent kinetic energy k, the temperature
variance θ2 is a measure for the temperature fluctuations. Launder (1988) simplifies
the heat flux equations and suggests the following algebraic heat flux model:

uiθ = −C1τ

[
uiuj

∂T

∂xj

+ C2ujθ
∂Ui

∂xj

+ C3βgiθ2

]
, (1.1)

where Ui =Ui + ui and T = T + θ denote the Reynolds decomposition of velocity and
temperature. C1, C2, C3 are empirical coefficients, g is gravity, β the thermal expansion
coefficient, and τ is a characteristic time scale of the turbulent heat transfer. Usually,
τ is given as the mechanical time scale k/ε, where k is the turbulent kinetic energy
and ε the dissipation rate of k. The Reynolds stress tensor uiuj is usually modelled
by means of an eddy viscosity ansatz using transport equations for k and ε or by the
modelled transport equations for the Reynolds stress tensor.

These equations contain several terms which can hardly be measured, but have to
be modelled, such as the temperature variance dissipation rate. DNS is a tool which
can provide such data and complement the experimental studies as, for example, the
ongoing project in the Karlsruhe lead laboratory (KALLA) (see Knebel et al. 2001)
on thermal and hydraulic investigations in liquid lead–bismuth (Pr ∼ 0.025).

In this paper, we will use DNS to investigate some peculiarities of the natural
convection process in a fluid with Pr = 0.025 and to analyse some relevant statistical
turbulence data. The results show the relevance of the turbulent diffusion terms and
strong quantitative and qualitative deficiencies of standard models for the turbulent
diffusion of the temperature variance θ2 and for the turbulent diffusion of the
temperature variance dissipation rate εθ . The two-point correlation technique first
introduced by Chou (1945) and Burgers (1953) and subsequently applied and extended
by Kolovandin & Vatutin (1972) and more recently by Jovanović, Ye & Durst (1995)
forms the basis of our theoretical approach. The results of this approach are new
statistical models for the turbulent diffusion terms in the transport equations for the
temperature variance θ2 and for the temperature variance dissipation rate εθ . These
models account for the peculiarities of the turbulent natural convection in low-Prandtl-
number fluids and lead therefore to an increased accuracy of turbulent heat flux
models.

2. Problem specification and method of solution
A simple physical model for the investigation of heat transfer by natural convection

is the Rayleigh–Bénard convection. It is given by an infinite fluid layer which is con-
fined by two rigid horizontal isothermal walls. The lower one is heated and the upper
one is cooled. The physical problem is characterized by two dimensionless numbers:
The Rayleigh number

Ra =
gβ�T D3

νκ
,

and the Prandtl number

Pr =
ν

κ
,

where g is gravity and β the thermal expansion coefficient as introduced above, �T

is the wall temperature difference, D is the distance between the two horizontal walls,
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ν is the kinematic viscosity and κ is the thermal diffusivity. An alternative to one of
the dimensionless numbers above is the Grashof number

Gr =
Ra

Pr
.

2.1. DNS of Rayleigh–Bénard convection

Direct numerical simulation is a method in which the three-dimensional conservation
equations for mass, momentum and energy are solved numerically such that all
relevant physical processes are resolved by the grid and by the computational domain.
This means that the mesh size is fine enough to resolve the smallest scales of
turbulence and to resolve the viscous and thermal boundary layers in the near-wall
region. In particular, the periodicity lengths which define the size of the computational
domain must be large enough to resolve the largest scales of turbulence. Meeting
both requirements determines the computational effort for such DNS, especially for
convection in liquid metals.

Simulations of Rayleigh–Bénard convection are performed with the TURBIT code
(Grötzbach 1987; Wörner 1994). It is a finite volume code which allows for direct
numerical simulations of turbulent heat and mass transfer in simple channel geomet-
ries. The governing equations for mass, momentum and energy are solved in dimen-
sionless form where the following normalization is used: channel height D, velocity
u0 =

√
gβ�T D, time D/u0, pressure ρu2

0, and difference between the temperatures
of the two walls �T . For spatial discretization a staggered grid and second-order
central finite differences are used. Time integration of the momentum equation is
performed by the explicit Euler–Leapfrog scheme, involving the projection method
of Chorin. For time integration of the energy equation, the semi-implicit Leapfrog–
Crank–Nicholson scheme is used. The boundary conditions use periodicity in both
horizontal directions, whereas at the lower and upper wall the no-slip condition
and constant wall temperatures are specified. Owing to above normalization, the
Reynolds number is given as Re0 = u0D/ν and it follows Re0 =

√
Gr0. Here, X1, X2

denote horizontal directions and X3 the vertical direction. N1, N2 denote the number
of mesh cells in horizontal directions, and N3 the number of mesh cells in the vertical
direction. Li denote the lengths of the computational domain.

In the following analysis, we will use data from a new DNS, but also data from
former simulations of Rayleigh–Bénard convection, for Pr = 0.71 in the turbulent
regime, and those for Pr= 0.006 in the turbulent but mainly conductive regime by
Wörner (1994). The objective for the new simulation at Pr = 0.025 is to find the
parameter range in which the heat transfer is more strongly governed by turbulent
convection. This simulation is started from an earlier simulation by Bunk & Wörner
(1998) with the same Prandtl number and lower Rayleigh number. The results of
the earlier simulation are interpolated to the finer grid and advanced in time. It
is characterized by Ra = 100 000 and is performed on a mesh with 400 × 400 × 75
cells within the horizontally periodic domain of size 8 × 8 × 1 (see table 1). This
periodic domain was selected according to numerical studies for low-Prandtl-number
Rayleigh–Bénard convection by Wörner (1994). One-dimensional energy spectra and
autocorrelations of velocity and temperature fluctuations are evaluated, indicating
that small and large scales of turbulence are well resolved within this computational
domain. However, the velocity autocorrelation in the X1-direction at large distances
deviates slightly from zero indicating that a smaller computational domain (than
8 × 8 × 1) may be insufficient to resolve large scales of the velocity field at these
Rayleigh and Prandtl numbers. After some simulation time to reach a statistically fully
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Pr Ra Re0 L1,2 N1,2 N3

0.71 630 000 941.9 7.92 200 49
0.025 100 000 2000 8 400 75
0.006 24 000 2000 8 250 49

Table 1. Parameters of the simulations.
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Figure 1. Mean temperature profiles for �, Pr =0.006, Ra= 24 000; �, Pr= 0.025,
Ra= 100 000; �, Pr =0.71, Ra=630 000.

developed convection state, the simulation covers about 18 000 statistically relevant
time steps for analysing the results. In the following, we assign a time-averaged quan-
tity with X. Numerically, X is determined by averaging the data over both homo-
geneous horizontal directions and over time.

2.2. Numerical results

To point out the effect of the large thermal diffusivity, i.e. of the small Prandtl number,
we compare the mean temperature profiles of the above referenced DNS results for
Rayleigh–Bénard convection at Pr= 0.006 and Pr = 0.71 with the new results for
Pr= 0.025 (figure 1). The simulations are carried out at similar Grashof numbers of
about 106 – 4 × 106 which means these flows have similar turbulence scales in the
velocity fields. The mean temperature profiles differ significantly, depending on the
Prandtl number. For Pr= 0.71 (Pr ∼ 0.71 corresponds, for example, to air), we find
a constant plateau in the channel central region and thin thermal boundary layers.
For Pr= 0.025 (Pr ∼ 0.025 corresponds, for example, to liquid lead–bismuth), we find
very thick thermal boundary layers, so convection has a small influence on the heat
transfer; thus, the Rayleigh number is obviously still not large enough to build up
an area with a constant temperature in the middle of the channel. For Pr = 0.006
(Pr ∼ 0.006 corresponds, for example, to sodium), there is an almost linear mean
temperature profile with a boundary layer extending almost over the whole channel.
This means that convection has very little influence on the vertical heat transfer at this
Rayleigh number. Nevertheless, this case also has, like the others, a highly turbulent
velocity field. In the following, we discuss some physical phenomena using the results
of the recent DNS of the Rayleigh–Bénard convection for Pr= 0.025. Owing to
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Figure 2. Vertical profiles of RMS values for Pr= 0.025, Ra= 105; �, u1-RMS; �, u2-RMS;
�, u3-RMS; �, θ -RMS.
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Figure 3. �, DNS evaluated profile of u3θ; �, DNS based results of the ‘k − ε − Prt ’ model,
�, for Pr =0.025, Ra= 105.

the large thermal diffusivity in comparison to the kinematic viscosity, temperature
fluctuations are rapidly damped so that large structures dominate the temperature
field, (see figure 1). Statistical quantities of the velocity and temperature fields, like
the vertical profiles of the root-mean-square (RMS) values of the fluctuations, differ
from each other strongly as well (see figure 2). For example, the form of the θ-RMS
profile is not similar to any of the ui-RMS profiles. In addition, the temperature
fluctuation profile shows only one broad maximum; it is expected that, with higher
Rayleigh numbers, two maxima will be formed with a local minimum in the middle.
Figures 1 and 2 show that different scales exist in the temperature and velocity
fields. Thus, assuming temperature and velocity fields and their statistical quantities
to be similar in order to model the turbulent heat fluxes, as is done by assuming
the Reynolds analogy in the turbulent Prandtl number (Prt ) models, will necessarily
lead to unsatisfactory predictions in the case of low-Prandtl-number flows. Figure 3
emphasizes this conclusion. Here, the standard parameters Prt = 0.9 and cµ = 0.09
were used in the modelled equations to calculate from the DNS data the vertical
turbulent heat flux which would be predicted by the widely used k − ε − Prt model.
These striking qualitative and quantitative differences may explain why these standard
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Figure 4. Vertical profiles of �, Pθ ; �, Dθ ; and �, εθ in equation (3.1), for (a) Pr =0.025
and (b) 0.71.

models quantitatively fail in this type of flow. Therefore it is desirable to develop
a turbulence model which does not make use of the analogy between temperature
and velocity fields. The model which accounts better for the characteristics of the
turbulent convection in low-Prandtl-number fluids should be based on transport
equations for the heat fluxes, for the temperature variance, and for the temperature
variance dissipation rate, or at least on simplified algebraic forms of these equations.

3. Temperature variance
3.1. Analysis of terms in the transport equation for the temperature variance

The transport equation for the temperature variance θ2 can be derived from the
energy equation:

∂θ2

∂t
+ Ui

∂θ2

∂xi

= − ∂

∂xi

uiθ2︸ ︷︷ ︸
Dt

θ

+κ
∂2θ2

∂xi∂xi︸ ︷︷ ︸
Dm

θ︸ ︷︷ ︸
Dθ

−2uiθ
∂T

∂xi︸ ︷︷ ︸
Pθ

−2κ
∂θ

∂xi

∂θ

∂xi︸ ︷︷ ︸
εθ

. (3.1)

Since the mean velocities averaged over long times are zero in the turbulent Rayleigh–
Bénard convection, there is no convective term in the transport equation for the
temperature variance in the case of Rayleigh–Bénard convection. Figure 4 shows the
budget of the transport equation (3.1) evaluated from the DNS data for Pr = 0.025
and Pr= 0.71. The turbulent heat fluxes uiθ are zero at the walls, therefore the
production term Pθ is also zero. Since the mean temperature is nearly constant in
the region outside of the thermal boundary layers for Pr = 0.71 at Ra = 630 000 (see
figure 1), Pθ is almost zero in this region. Dθ is usually interpreted as a diffusion term
and it turns out to be of great importance in the flow considered. In the region very
close to the walls, it is the diffusion term that balances the dissipation εθ . At the edges
of the boundary layers, Dθ changes sign and largely contributes to the balance of the
production term Pθ . Moreover, for higher turbulence intensities the term Dθ changes
sign again to become slightly positive in the region outside the thermal boundary
layers and balances the dissipation rate εθ (figure 4b). DNS of natural convection in
a vertical channel was performed by Boudjemadi et al. (1996) for Ra =105, Pr =0.71,
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Figure 5. Vertical profiles of �, Dm
θ and �, Dt

θ at (a) Pr= 0.025 and (b) 0.71.

and Versteegh & Nieuwstadt (1998) for Ra = 5 × 106, Pr = 0.709. Evaluated budgets
of the temperature variance in Boudjemadi et al. (1996) and Versteegh & Nieuwstadt
(1998) show qualitatively the same behaviour of Pθ , Dθ and εθ compared to the results
given in figure 4(b). Figures 5(a) and 5(b) show the contribution of the molecular
diffusion Dm

θ and of the turbulent diffusion Dt
θ to Dθ . Near the walls, Dm

θ is one of the

dominant terms in the budget of θ2. A similar analysis of DNS data for Pr =0.006
and Ra =24 000 is performed by Wörner & Grötzbach (1996b).

The closure of equation (3.1) requires modelling of the terms Dt
θ and εθ . First, we

discuss Dt
θ . The closure of εθ will be discussed in § 4.

3.2. Turbulent diffusion Dt
θ in the temperature variance equation

3.2.1. Analysis of existing Dt
θ models

The triple correlation uiθ2 is usually modelled using a generalized gradient diffusion
hypothesis (GGDH), first introduced by Daly & Harlow (1970), as

uiθ2 = −CDθ

k

ε
uiuj

∂θ2

∂xj

, (3.2)

or when replacing the tensor (k/ε)uiuj by the scalar form k2/ε by

uiθ2 = −CSθ

k2

ε

∂θ2

∂xi

, (3.3)

as suggested by Spalding (1971). We use standard coefficients CDθ = 0.22, after Jones &
Musonge (1988), and CSθ = 0.3 after Spalding (1971). Considering the time scale of
the temperature field, instead of the velocity time scale, may improve the modelling, in
particular for buoyant flows. This consideration gives the following gradient diffusion
model

uiθ2 = −CHθ

θ2

εθ

uiuj

∂θ2

∂xj

, (3.4)

as used by Elghobashi & Launder (1983). CHθ = 0.37 will be used for comparisons.
Taking into account the zero-fourth-order cumulant hypothesis of Milionshtchikov
(1941) and neglecting most of the terms containing derivatives of the third moments
in the transport equations for the triple velocity correlation, Hanjalić & Launder
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Figure 6. �, Comparison of DNS results for u3θ2, and DNS based results for u3θ2 as predicted
by the equations (3.2) – – –, (3.3) · · ·, (3.4) - · -, (3.5) - · · - and (3.6) - - - for (a) Pr = 0.025,
(b) 0.71.

(1972) derived an algebraic model for uiujuk . Analogously, an algebraic model for

uiθ2 may be given by

uiθ2 = −CHL

k

ε

(
uiuj

∂θ2

∂xj

+ 2ujθ
∂uiθ

∂xj

)
, (3.5)

as suggested by Deardorf (1973). Hanjalić & Launder (1972) take the coefficient in the
model for uiujuk as CHL = 0.08 and in their second paper (Hanjalić & Launder 1976)
they propose CHL = 0.11. For comparison with DNS data of the natural convection
in a vertical channel, Dol, Hanjalić & Kenjereś (1997) choose CHL = 0.11 in (3.5). We
make the comparison using CHL = 0.08. Dol, Hanjalić & Versteegh (1999) included
the modelled production of the triple correlation in the model (3.5) to obtain

uiθ2 = −CDHV

k

ε

(
uiuj

∂θ2

∂xj

+ 2ujθ
∂uiθ

∂xj

+ 2uiujθ
∂T

∂xj

)
, (3.6)

where uiujθ is modelled by

uiujθ = −C ′ k

ε

(
uiuk

∂ujθ

∂xk

+ ujuk

∂uiθ

∂xk

)
.

We take CDHV = 0.05 after Dol et al. (1999). Figure 6 shows the comparison of vertical
profiles of uiθ2 as evaluated from DNS and predictions of uiθ2 by the models (3.2),
(3.3), (3.4), (3.5) and (3.6) for the case of Rayleigh–Bénard convection at Ra = 1 × 105,
Pr= 0.025 and at Ra = 6.3 × 105, Pr =0.71. Using a thermal time scale or some
combination of thermal and mechanical time scales may improve the modelling of
the turbulent heat transport, particularly in buoyancy dominated flows, but there is
little evidence in support of this, mainly because most reported tests were performed
for equilibrium flows where the ratio of the time scales does not vary appreciably,
as pointed out by Hanjalić (1994). Figure 7 shows thermal and mechanical time
scales for the cases of Rayleigh–Bénard convection for Pr =0.025, Ra = 1 × 105 and
for Pr =0.71, Ra = 6.3 × 105 as evaluated from DNS. Figure 8 shows the vertical
variation of the thermal to mechanical time scale ratio R = (θ2/εθ )(ε/k) for the cases
considered. The thermal time scale in the considered parameter range is strongly
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Figure 7. Vertical profiles of k/ε for the case of Pr = 0.025 · · · and Pr = 0.71 —, and

vertical profiles of θ2/εθ for the case of Pr = 0.025 – – – and Pr = 0.71 - · -.
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Figure 8. Vertical profiles of the time scale ratio R, for the case Pr = 0.025 — and
Pr =0.71 – – –.

dependent on the flow parameters and position, so that this strong dependency also
occurs in R.

Comparing the prediction of uiθ2 which considers the thermal time scale in the
gradient diffusion model type (equation (3.4)) with the DNS results for the case of
Pr = 0.71 (figure 6b), we see the improvement of the GGDH model (equation (3.2))
at the edge of the thermal boundary layer and in the channel centre. In the near-
wall region, both models give very similar values of uiθ2 but they are too low.
Dol et al. (1997) evaluated DNS results of Versteegh & Nieuwstadt (1998) for
an infinite differentially heated vertical channel at Pr = 0.709, Ra = 5.4 × 105 and
showed a similar improvement when using the thermal time scale with the gradient
diffusion model. The coefficient used by Dol et al. (1997) was CHθ =0.22. Comparing
predictions by the model (3.4) with the experimental results of LaRue & Libby (1981)
for the thermal mixing layer downstream of a half heated grid, Elghobashi & Launder
(1983) found good agreement using the coefficient CHθ = 0.35 which is similar to
the best fit CHθ = 0.37 we obtain for the Rayleigh–Bénard convection at Pr= 0.71,
Ra =6.3 × 105.

Owing to the large thermal diffusivity compared to the kinematic viscosity of
low-Prandtl-number fluids, the temperature fluctuations are damped strongly to give
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a thermal time scale which may be very small. Comparing thermal time scales for
Pr= 0.025 and for Pr= 0.71 (figure 7) as evaluated from DNS, we note that the
thermal time scale for the case of Pr =0.025 is about twice as low as the thermal
time scale for Pr =0.71 in the channel centre at these Rayleigh numbers. However,
within the thermal boundary layers, the thermal time scales differ up to two orders
of magnitude, where the mechanical time scales are still quite similar. This results in
predictions by model (3.4) which are considerably lower, in particular in the region
closer to the wall, than the DNS results, giving incorrect positions of the extremal
points (figure 6a). No optimization of the coefficient CHθ can improve this deficiency.

Comparison of the predictions of uiθ2 which consider the mechanical time
scale, as given by the models (3.2), (3.3), (3.5) and (3.6), with DNS results show
good optimization of the coefficients and fairly good agreement qualitatively and
quantitatively for the case of Pr= 0.71 (figure 6b). However, obvious deficiencies of
these models are still present when the gradient of uiθ2 is taken. This point will be
discussed extensively later. Considering the same coefficients in the models (3.2), (3.3),
(3.5) and (3.6) results in a strong overprediction for the case of Pr =0.025 (figure 6a).
Therefore, satisfactory predictions for both cases just by optimization of the constant
coefficient, are obviously not possible.

Replacing the mechanical time scale by the thermal time scale in equations (3.3),
(3.5) and (3.6) will result in predictions with displaced extrema for the case Pr = 0.025,
as shown above for the GGDH model type.

This analysis indicates the following conclusions for modelling of the triple
correlation vector uiθ2 which can cover a wide range of low Prandtl numbers:

(i) Simple modelling of the turbulent diffusion in the temperature variance
equation requires explicit consideration of the influence of the molecular fluid
properties.

(ii) Adequate modelling of the triple correlation vector uiθ2 seems to require the
use of both, the mechanical and the thermal turbulence time scale.

(iii) The modelling of the turbulent diffusion, currently expressed in terms of a
gradient of the transported quantity, possibly requires a new formulation, as pointed
out by Hanjalić (1994).

3.2.2. Development and analysis of a new model for Dt
θ

In the following, we develop a new formulation for modelling of the turbulent
diffusion in the temperature variance equation using the two-point correlation
technique first introduced by Chou (1945) and Burgers (1953). Let a new coordinate
system relative to two arbitrary points A and B be defined as

ξk = (xk)B − (xk)A, (3.7)

(xk)AB = 1
2
[(xk)A + (xk)B]. (3.8)

The differential operators at points A and B as functions of (xk)AB and ξk are given
as follows(

∂

∂xk

)
A

=

(
∂

∂xk

)
AB

∂(xk)AB

∂(xk)A
+

∂

∂ξk

∂ξk

∂(xk)A
=

1

2

(
∂

∂xk

)
AB

− ∂

∂ξk

, (3.9)(
∂

∂xk

)
B

=

(
∂

∂xk

)
AB

∂(xk)AB

∂(xk)B
+

∂

∂ξk

∂ξk

∂(xk)B
=

1

2

(
∂

∂xk

)
AB

+
∂

∂ξk

. (3.10)
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From these two equations, we obtain(
∂

∂xk

)
A

(
∂

∂xk

)
B

=
1

4

(
∂2

∂xk∂xk

)
AB

− ∂2

∂ξk∂ξk

. (3.11)

These results are known from (Hinze 1975, chap. 4-3). Applying the operator (3.11)
to the product of the velocity and temperature fluctuations at two points (ui)A(θθ)B
yields (

∂

∂xk

)
A

(
∂

∂xk

)
B

(ui)A(θθ)B =
1

4

(
∂2

∂xk∂xk

)
AB

(ui)A(θθ)B

− ∂2

∂ξk∂ξk

(ui)A(θθ)B. (3.12)

Since (ui)A can be treated as constant with respect to a derivative at point B and
(θθ)B as constant with respect to a derivative at point A, it follows from (3.12) after
averaging(

∂ui

∂xk

)
A

(
∂θθ

∂xk

)
B

=
1

4

(
∂2

∂xk∂xk

)
AB

(ui)A(θθ)B − ∂2

∂ξk∂ξk

(ui)A(θθ)B. (3.13)

Taking the limit for A → B yields

∂ui

∂xk

∂θ2

∂xk

= 1
4
�xuiθ2 − 1

2

[
(�ξuiθ

′
θ

′)0 + (�ξu
′
iθθ )0

]
, (3.14)

where �x = ∂2/∂xi∂xi is the Laplace operator with respect to x; prime ′ indicates
the value of the two-point correlation function at the point B , and subscript zero
represents the zero separation ξ = 0 between two points. For high Reynolds and
Péclet numbers, we may expect that turbulence becomes locally quasi-homogeneous.
The condition of invariance under translation for a homogeneous flow field yields
(see Hinze 1975, chap. 4-3)

uiθ
′
θ

′ = −u
′
iθθ . (3.15)

Differentiation of (3.15) with respect to ξ , and taking A → B yields

(�ξuiθ
′
θ

′)0 + (�ξu
′
iθθ )0 → 0, (3.16)

if the fine-scale structure of the flow field is locally homogeneous. Thus, for a
homogeneous flow field it follows from (3.16) and (3.14), that the right-hand side of
(3.14) may reduce to �xuiθ2/4, but it is also expected that uiθ2 becomes negligibly
small. We consider the flow field as inhomogeneous so that

(�ξuiθ
′
θ

′)0 + (�ξu
′
iθθ )0 �= 0.

For small separation between the points A and B , we assume the following
approximation

(�ξuiθ
′
θ

′)0 � �xuiθ2, (�ξu
′
iθθ )0 � �xuiθ2. (3.17)

From this follows

[(�ξuiθ
′
θ

′)0 + (�ξu
′
iθθ )0] = C�xuiθ2 + R, (3.18)

where the term R is defined as

R ≡ [(�ξuiθ
′
θ

′)0 + (�ξu
′
iθθ )0] − C�xuiθ2,
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C ∈ �. From this follows, together with (3.14),

R =
[
(�ξuiθ

′
θ

′)0 + (�ξu
′
iθθ )0

]
− C�xuiθ2 � C ′ ∂ui

∂xk

∂θ2

∂xk

, (3.19)

C ′ ∈ �. For strongly inhomogeneous regions, for example in the near-wall region, we
may expect a large absolute value of the left-hand side of (3.18). However, we cannot
determine the sign of the left-hand side of (3.18) or of R at this point. From (3.14)
and (3.18), we obtain

∂ui

∂xk

∂θ2

∂xk

= CT 1(�xuiθ2 + R), (3.20)

CT 1 ∈ �. We now make the second assumption. Similarly to Shikazono & Kasagi
(1996) and Wörner, Ye & Grötzbach (1999), we assume the following functional
relationship between dimensionless quantities

∂ui

∂xk

∂θ2

∂xk√(
∂u(i)

∂xk

)2
√(

∂θ

∂xk

)2√
θ2

� CT 2

uiθ2√
u2

(i) θ2

, (3.21)

where the indices in parentheses do not obey the summation convention rule. The
temperature variance dissipation rate is defined as follows

εθ = 2κ
∂θ

∂xk

∂θ

∂xk

= 2κ

(
∂θ

∂xk

)2

, (3.22)

and we approximate the ratio of kinetic energy to dissipation rate of velocity
component i with the ratio of the total kinetic energy to total dissipation rate

u2
(i)(

∂u(i)

∂xk

)2
� 2k

ε

ν

. (3.23)

Using (3.22) and (3.23), we can write (3.21) as

∂ui

∂xk

∂θ2

∂xk

= CT 3

1√
4νκ

√
ε

k

εθ

θ2
uiθ2. (3.24)

Being consistent with usual gradient diffusion models, all standard triple correlation
models take a negative sign (equations (3.2), (3.3) and (3.5)). This redefines the
coefficient to be the negative value of the CT 3 in (3.24). From this and together with
(3.20) and (3.24) we obtain

uiθ2 = −Cθ2
√

νκ

√
k

ε

θ2

εθ

[
�xuiθ2 + R

]
. (3.25)
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From (3.19) and (3.24), it follows that 2
√

νκ

√
(k/ε)(θ2/εθ ) · R may be approximated

with one of the standard models for uiθ2 resulting in

uiθ2 = −Cθ


2

√
νκ

√
k

ε

θ2

εθ

�xuiθ2 +
k

ε
uiuj

∂θ2

∂xj


 , (3.26)

or

uiθ2 = −Cθ


2

√
νκ

√
k

ε

θ2

εθ

�xuiθ2 +
k2

ε

∂θ2

∂xi


 . (3.27)

The formal derivation of the coefficient

√
(k/ε)(θ2/εθ ) from (3.25) supports the

application of the mixed time scale in the model (3.26)

uiθ2 = −Cθ

√
k

ε

θ2

εθ

[
2

√
νκ�xuiθ2 + uiuj

∂θ2

∂xj

]
, (3.28)

or in the model (3.2) resulting in

uiθ2 = −C
′

Hθ

√
k

ε

θ2

εθ

uiuj

∂θ2

∂xj

. (3.29)

The coefficient Cθ =0.11 is used in the models (3.26), (3.27) and (3.28). In the model
(3.29), C

′

Hθ = 0.29 is found to give good predictions for Pr = 0.71. Elghobashi &
Launder (1983) compared the experimental results of LaRue & Libby (1981) for the
thermal mixing layer downstream of a half-heated grid with predictions by model
(3.29) and found good agreement using the coefficient C

′

Hθ = 0.25. Similarly, a mixed
time scale may be applied in model (3.5) resulting in

uiθ2 = −CHL

√
k

ε

θ2

εθ

(
uiuj

∂θ2

∂xj

+ 2uiθ
∂uiθ

∂xj

)
. (3.30)

Approximating the term R in (3.25) with 2
√

νκ

√
(k/ε)(θ2/εθ )�xuiθ2 we obtain

uiθ2 = −CDθ2
√

νκ

√
k

ε

θ2

εθ

�xuiθ2, (3.31)

with the new coefficient CDθ . For comparison, we will use CDθ = 0.22.
A numerically and physically simpler model, which can cover a wide range of

Prandtl numbers, may be given as

uiθ2 = −CDθ

√
Pr

k

ε
uiuj

∂θ2

∂xj

, (3.32)

where the same coefficient, CDθ = 0.22, as used in the models (3.2) and (3.31) is taken
for comparison.

Figure 9a shows vertical profiles of Dt
θ = (∂/∂xi)uiθ2 as evaluated from DNS, and

DNS based results for Dt
θ as predicted by the models (3.2), (3.3), (3.4), (3.6) and (3.32)

for Pr=0.025. As indicated in figure 6a standard models (3.2), (3.3) and the model (3.6)
strongly overpredict the DNS results. Models (3.2) and (3.6) give the correct position
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Figure 9. �, Evaluated vertical profile of Dt
θ for (a) Pr =0.025, (b) 0.71. DNS based results

for Dt
θ as predicted by the equations (3.2) —, (3.3) – – –, (3.4) · · ·, (3.6) – · – and (3.32) - · · -,

for (a) Pr= 0.025, (b) 0.71.

where the model (3.3) slightly misplaces the maximum point. Replacing the mechanical
time scale with the thermal time scale as done in model (3.4) will underpredict the
maximum point and give qualitatively different results within the thermal boundary
layer at this Rayleigh number, as already indicated in the previous section (see figure
7). Model (3.32) gives better results, but underpredicts the maxima considerably.

For Pr = 0.71, a similar comparison is given in figure 9b. Results due to model
(3.2) show overpredictions at the edge of the thermal boundary layer and strong
underprediction in the near-wall region. Taking the thermal time scale in the diffusion
model, equation (3.4), gives good prediction of the minimum point and improves the
results at the edge of the boundary layer, but yields even stronger underprediction in
the near-wall region compared to the results of model (3.2). Model (3.3) considerably
overpredicts the minimum point and the results at the edge of the boundary layer.
Fortunately, model (3.3) gives good prediction of the maximum point. Model (3.6)
performs well at the edge of the boundary layer and gives small overprediction within
the boundary layer and of the maximum point while underpredicting the minima.
Model (3.32) gives very similar results to model (3.2).

For the case Pr= 0.71, we conclude that the coefficients of the standard models
are well optimized. However, considering results for the case of Pr= 0.025, we find
overpredictions of the maxima up to seven times, as in the results given by model (3.6),
while using the same coefficients. Application of the thermal, instead of mechanical,
time scale in the standard model for Dt

θ results in qualitatively wrong predictions
within the thermal boundary layer for Pr = 0.025 and Ra = 1 × 105. A minimum level
of improvement for standard models will be the introduction of the Prandtl number
in the empirical coefficient, as done in model (3.32). Model (3.32) performs similarly
to model (3.2) in the case Pr = 0.71, and gives comparably good results in the case
Pr= 0.025, but underpredicts the maxima by about 40% in the case Pr =0.025.

Figure 10 shows the vertical profiles of Dt
θ as evaluated from the DNS, and the

DNS based results for Dt
θ as predicted by the models (3.5), (3.26), (3.27), (3.28), (3.29),

(3.30) and (3.31), for Pr =0.025 and Pr =0.71 respectively.
First, we compare the predictions given by the models (3.5), (3.29) and (3.30).

This comparison allows the analysis of the influence of the mixed time scale on
the standard turbulent diffusion models. Predictions by model (3.29) show a big
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Figure 10. �, Evaluated vertical profile of Dt
θ for (a) Pr = 0.025, (b) 0.71. DNS based results

for Dt
θ as predicted by the equations (3.5) - · -, (3.26) – – –, (3.27) · · ·, (3.28) —, (3.29) – · · –,

(3.30) · · · and (3.31) - - -, for (a) Pr = 0.025, (b) 0.71.

improvement compared to the standard gradient diffusion model (equation (3.2)) in
the case Pr= 0.025, since the model given by equation (3.2) overpredicts the case
Pr = 0.025 by about four times. However, the major deficiency of the simple gradient
diffusion model (equation (3.2)) cannot be recovered if the mixed time scale is used;
then the model still underestimates the maxima by about three times in the case
Pr = 0.71 while it overpredicts the maxima by about 50% in the case Pr= 0.025.
Model (3.5) considers the mechanical time scale and gives fairly good predictions for
Pr = 0.71, but strongly overpredicts the case Pr = 0.025 since the added production
term cannot account for the large thermal diffusivity of the low-Prandtl-number fluids.
Taking now the mixed time scale for the same model (equation (3.30)) gives very good
predictions at the edge of the thermal boundary layer, but yields values that are too
low for the minimum point for Pr = 0.71. Considering the mixed time scale yields a big
improvement of the model in the case Pr =0.025, as shown in figure 10(a). However,
assuming the mixed time scale does not improve the deficiencies of the models
within the thermal boundary layer, and, although improving the case Pr = 0.025
strongly, still yields a large overprediction of the maxima (by about 100% by the
equation (3.30)).

We discuss now the results of models (3.26), (3.27) and (3.28) together, since these
models are simple variations of equation (3.25), and compare them with results of
model (3.31). Since model (3.26) is formally similar to model (3.5), the coefficient Cθ

is intentionally fixed to the value Cθ = 0.11 for models (3.26), (3.27) and (3.28), which
is the suggested value for triple correlation models by Hanjalić & Launder (1976)
and Dol et al. (1997). This allows us to compare the new models with the standard
model (equation (3.5)). In the model (3.31), the term R is also approximated with

2
√

νκ

√
(k/ε)(θ2/εθ )�xuiθ2, so that a value of the coefficient will be considered as

the double of the value of the coefficient used in (3.26), and therefore CDθ = 0.22.
Notice that 0.22 is also the suggested coefficient value for the standard gradient
diffusion model (3.2). Fixing the coefficients in this way enables a first analysis of the
description of R, and of the influence of the time scale on the performance of the
basic model, equation (3.25).

Figure 10(b) shows good predictions of the maxima and minima by models (3.26),
(3.27), (3.28) and (3.31) for the case Pr= 0.71. These results show very good predictions
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within the thermal boundary layer and some improvement of the standard model
(equations (3.2) and (3.3)) at the edge of the boundary layer. However, the results still
give an underprediction at the edge of the boundary layer. For the case Pr =0.71, the
coefficient in equations (3.26), (3.27), (3.28) and (3.31) seems to require only a minimal
optimization depending on the description of R and of the choice of the time scale.

For the case Pr= 0.025, a similar comparison is shown in figure 10(a). Model (3.26)
differs from the standard model (3.5) only in one term so that a direct comparison
may indicate the influence of the new formulation. Model (3.26) shows quantitatively
much better results as compared with the predictions by model (3.5), but still produces
values of the maxima that are too large. Model (3.27) performs similarly to model
(3.26), resulting in much better, but still too large, predictions of the maxima. In
model (3.27), the term R is approximated by equation (3.3). Owing to this description
of R, model (3.27) yields, similarly to model (3.3), a slightly misplaced position of the
maxima (figures 10a and 9a). For the case when a mixed time scale is used, a direct
comparison of models (3.28) and (3.30) shows a similar improvement of the new
model formulation. Model (3.28) gives very good predictions in the channel centre
and within the thermal boundary layer, but slightly underpredicts in the near-wall
region. Results given by model (3.30) overpredict the maximum point by about 100%
(figure 10a). Model (3.31) gives a good approximation of Dt

θ in the channel centre
and within the thermal boundary layer, but underestimates the near wall region.

These results indicate that, for Pr ∼ 1, an application of the mixed time scale
in model (3.5), as given by model (3.30), will give a good approximation of Dt

θ .
However, in the case Pr= 0.025, this approximation does not give satisfactory results
since model (3.30) overpredicts the maxima by about 100%. This deficiency may be
resolved if the approach introduced in this section is applied, then model (3.28) gives
good predictions for both cases (Pr =0.025 and Pr= 0.71), while the same empirical
coefficient is used (figures 10(a) and 10(b)).

3.2.3. Discussion of the new model for the turbulent diffusion Dt
θ

Model (3.28) introduces the term 2
√

νκ

√
(k/ε)(θ2/εθ )�xuiθ2 to approximate the

vector uiθ2. In the following, we discuss this term in more detail. Normalization
introduced in the § 2 yields

2
√

νκ =
2

Re0Pr1/2
.

For high Reynolds numbers, we may expect that the transport due to the
turbulent diffusion becomes negligibly small compared to the other terms, so that
the production and the dissipation rate are in local equilibrium. The coefficient

Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ ) used in models (3.26), (3.27), (3.28) and (3.31) is

consistent with this argumentation.
Re0 
 1 may give a large value of the coefficient Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ ) and

therefore can result in numerical instability. However, beyond some critical Reynolds

number, the term

√
(k/ε)(θ2/εθ ) vanishes. A slight numerical disadvantage of the

model is induced by the term �xuiθ2 since second derivatives necessitate finer grids.
Accuracy and numerical stability of the solution strongly depend on the value of

the coefficient Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ ). In fact, equation (3.25), and variations

of this equation given by (3.26), (3.27) and (3.28), represent a Helmholtz equation
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Figure 11. DNS-evaluated vertical profiles of the coefficient Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ )

for Pr = 0.025 – – –, and for Pr = 0.71 —.

with a real coefficient Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ ). Equation (3.31) is a homogeneous

Helmholtz equation. It is well known that the accuracy of the numerical solution
to the Helmholtz equation depends significantly on the physical coefficient (here

Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ )) and that the mesh-width should be adjusted on this

coefficient (see e.g. Ihlenburg & Babuška 1995). Bayliss, Goldstein & Turkel (1985)
show that the quality of the numerical results deteriorates as the coefficient in the
Helmholtz equation increases and state a convergence theorem under the assumption
that coefficient × mesh width is sufficiently small. In practice, we usually follow a
simple rule

coefficient × mesh width= const.

(Harari & Hughes 1991). In computations with low coefficients, this rule leads
to sufficiently good results. Figure 11 shows vertical profiles of the coefficient

Cθ (2/Re0Pr1/2)

√
(k/ε)(θ2/εθ ) as evaluated from the DNS for the cases Pr =0.025 and

Pr = 0.71. We recall that in the normalization used here, Re0 = 941.9 and Re0 = 2000
for the cases Pr = 0.71 and Pr = 0.025, respectively. Figure 11 shows very low values
of the coefficient for the cases considered, and indicates that convergence problems
in the numerical solution of model (3.28) may occur only at very low Reynolds and

Prandtl numbers. However, the term

√
(k/ε)(θ2/εθ ) in the coefficient vanishes beyond

some critical Reynolds number, as pointed out above. The new modelling approach
introduced in this section results in a Helmholtz equation and represents a simple
linear approximation of the nonlinear transport equation for uiθ2. The coefficient for
the Laplacian considers mixed time scales (k/ε)(θ2/εθ ). Because the model should

approximate uiθ2 in the entire flow field and at all scales an application of the mixed
time scales in the coefficient is physically consistent.

This modelling approach yields also a good approximation of the turbulent diffusion
in the temperature variance dissipation rate equation where standard models show
strong deficiencies or fail completely. However, the generality and performance of the
models based on the new modelling approach can only be proved when they are
successfully applied to different types of flow.
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Figure 12. Vertical profiles of �, PΣ ; �, Dεθ
; and �, D in equation (4.1),

for (a) Pr =0.025, (b) 0.71.

4. Temperature variance dissipation rate
In the following, we discuss the temperature variance dissipation rate εθ which is

the second term that must be modelled in order to close the transport equation for the
temperature variance (equation (3.1)). εθ is often modelled assuming a constant value
of the thermal to mechanical time scale ratio R = (θ2/εθ )(ε/k). However, figure 8
shows that this assumption necessarily leads to wrong predictions for the cases
Pr= 0.025, Ra = 105, and Pr= 0.71, Ra = 6.3 × 105 and indicates that a modelled
transport equation for the temperature variance dissipation rate may give better
predictions and that it may cover a wide range of Prandtl and Rayleigh numbers.

4.1. Analysis of the transport equation for the temperature variance dissipation rate

The transport equation for the dissipation rate εθ of the temperature variance θ2 can
be derived from the energy equation:

∂εθ

∂t
+ Ui

∂εθ

∂xi

= − ∂

∂xi

uiε
∗
θ︸ ︷︷ ︸

Dt
εθ

+κ
∂2εθ

∂xi∂xi︸ ︷︷ ︸
Dm

εθ︸ ︷︷ ︸
Dεθ

−2κ
∂ui

∂xj

∂θ

∂xj

∂T

∂xi︸ ︷︷ ︸
PI

−2κ
∂θ

∂xi

∂θ

∂xj

∂Ui

∂xj︸ ︷︷ ︸
PII

−2κui

∂θ

∂xj

∂2T

∂xi∂xj︸ ︷︷ ︸
PIII

−2κ
∂ui

∂xj

∂θ

∂xj

∂θ

∂xi︸ ︷︷ ︸
PIV

−2κ2 ∂2θ

∂xi∂xj

∂2θ

∂xi∂xj︸ ︷︷ ︸
D

, (4.1)

where ε∗
θ = κ(∂θ/∂xk)(∂θ/∂xk) and ε∗

θ = εθ . From the DNS data for the Rayleigh–
Bénard convection at Pr= 0.025 and Pr= 0.71, each term of (4.1) is calculated.

Figure 12 shows evaluated budgets of εθ at Pr= 0.025 and Pr = 0.71 where the
production terms are summed up PΣ =PI + PII + PIII +PIV . Outside the thermal
boundary layers, the diffusive transport is positive but very small for both Prandtl
numbers. Thus, the production and destruction terms are almost in local equilibrium.
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Figure 13. Vertical profiles of �, Dm
εθ

and �, Dt
εθ

for (a) Pr = 0.025, (b) 0.71.

Inside the boundary layers, the term PΣ and the destruction term D show peaks at
different wall distances. In these regions, the diffusive transport Dεθ

is very important,
since it balances this difference by redistributing εθ from the near-wall region to the
channel centre.

Figure 13 shows the contribution of the molecular Dm
εθ

and turbulent diffusion term
Dt

εθ
to the total diffusion Dεθ

in the cases considered. Near the walls, Dm
εθ

is one of the
dominant terms in the budget of εθ . Similar results from DNS data for Pr =0.006
and Ra =24 000 are obtained by Wörner & Grötzbach (1996a).

4.2. Analysis of existing and development of a new model for the turbulent
diffusion Dt

εθ

The correlation uiε
∗
θ is often modelled using the gradient hypothesis (see e.g. Nagano &

Kim 1988)

uiε
∗
θ = −CDεθ

k

ε
uiuj

∂εθ

∂xj

, (4.2)

or when replacing the tensor (k/ε)uiuj by the scalar form k2/ε as

uiε
∗
θ = −CSεθ

k2

ε

∂εθ

∂xi

. (4.3)

As introduced in § 3.1, the points A and B of the relative coordinate system are
arbitrary, so it follows that:

(�ξθu
′
iθ

′)0 = (�ξθ
′
uiθ )0,

(4.4)
(�ξθθu

′
i)0 = (�ξθ

′
θ

′
ui)0.

Using the differential operator (3.11) and equations (4.4), the transport term uiε
∗
θ can

be written as

uiε
∗
θ = κ 1

8
�xuiθ2 − κ[(�ξuiθθ

′)0 + 1
2
(�ξu

′
iθθ )0]. (4.5)

If the fine-scale structure of the turbulence field is locally homogeneous, it follows
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that (see Hinze 1975, chap. 4-3):

(�ξuiθθ
′)0 � −(�ξu

′
iθ

′
θ )0,

(4.6)
(�ξu

′
iθθ )0 � −(�ξuiθ

′
θ

′)0,

and with (4.4) this yields

(�ξuiθθ
′)0 � (�ξu

′
iθθ )0 � 0. (4.7)

The correlation uiε
∗
θ describes the transport from the walls to the channel centre.

This transport is locally strongly inhomogeneous at low and moderate Reynolds and
Péclet numbers. We consider the flow field as inhomogeneous so that

(�ξuiθθ
′)0 �= 0, (�ξu

′
iθθ )0 �= 0,

and for a small separation between the points A and B , we assume the following
approximation

(�ξuiθθ
′)0 � �xuiθ2, (�ξu

′
iθθ )0 � �xuiθ2. (4.8)

Therefore, analogously to the derivation introduced in the previous section, we write
(4.5) for small separation between points A and B as

uiε
∗
θ = −CDT (κ�xuiθ2 + Rε), (4.9)

where the term Rε � C ′uiε
∗
θ for some C ′ ∈ �. However, we cannot determine the sign

of Rε at this point. Rε can be described by the term κ�xuiθ2 resulting in

uiε
∗
θ = −C∗

DT κ�xuiθ2, (4.10)

or using a standard model for uiε
∗
θ .

From (3.31) we obtain

−κ�xuiθ2 = C∗
√

1

Pr

ε

k

εθ

θ2
uiθ2. (4.11)

Equations (4.10) and (4.11) yield the simple model

uiε
∗
θ = CT

DT

√
1

Pr

ε

k

εθ

θ2
uiθ2. (4.12)

Equations (4.9) and (4.11) yield

uiε
∗
θ = CT

DT

√
1

Pr

ε

k

εθ

θ2
uiθ2 − CDT Rε. (4.13)

Figure 14 shows vertical profiles of the uiε
∗
θ for Rayleigh–Bénard convection

evaluated from the DNS data at Prandtl numbers Pr = 0.025 and Pr = 0.71. The
net contribution of uiε

∗
θ to εθ is zero, since it acts as a redistribution term. Apart

of the thermal boundary layer, this transport shows almost linear profiles for both
cases considered. Within the thermal boundary layer, the term uiε

∗
θ shows one local

extremum for the case Pr = 0.025, Ra = 100 000. For Pr = 0.71, Ra = 630 000, DNS
results show local minima, maxima and an additional change of a gradient within
the thermal boundary layer. Figure 15 contains vertical profiles of uiε

∗
θ as calculated

by equations (4.2), (4.3) and (4.12) using DNS data, where the standard coefficients
CDεθ

= 0.22, CSεθ
= 0.3 are used in equations (4.2) and (4.3), respectively. The coefficient

in (4.12) is simply set as CT
DT =1.
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Figure 14. �, Evaluated vertical profile of uiε
∗
θ for (a) Pr =0.025, (b) 0.71.
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Figure 15. Vertical profile of uiε
∗
θ predicted by (4.12) —, by (4.2) – – – and by (4.3) · · ·, for
(a) Pr = 0.025, (b) 0.71.

We first compare predictions for Pr= 0.025 (figure 15a) with DNS result
(figure 14a). Model (4.12) gives qualitatively good predictions, whereas models (4.2)
and (4.3) give acceptable predictions in the channel centre, but completely fail within
the thermal boundary layer at this Rayleigh number. Quantitatively, model (4.12) is
about two times too low.

Comparing predictions for Pr= 0.71 (figure 15b) with DNS results (figure 14b)
qualitatively, we see that model (4.12) predicts the near-wall range well, but does not
describe the change of gradient in the thermal boundary layer. In contrast to this,
models (4.2) and (4.3) predict the change of gradient, but not the change of sign
in the near-wall region. In the channel centre, model (4.2) gives qualitatively good
predictions whereas models (4.12) and (4.3) have a correct trend and would give
qualitatively good predictions for larger coefficients. Quantitatively, all three models
are about three orders of magnitude too low at this Rayleigh number.

From these comparisons, it follows that the description of the term Rε in the
model (4.13) with a standard model for uiε

∗
θ (equations (4.2) and (4.3)), and with an

additional empirical coefficient may give a better approximation. Equations (4.13),
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Figure 16. �, Evaluated vertical profile of Dt
εθ

for (a) Pr = 0.025, (b) 0.71. DNS based results
for Dt

εθ
as predicted by the equations (4.2) – – –, (4.3) · · ·, (4.14) — and (4.15) – · –, for

(a) Pr = 0.025, (b) 0.71.

(4.2) and (4.3) with the empirical coefficient Pr0.75 yield the following new models

uiε
∗
θ = −Pr0.75CT

εθ

[
k

ε
uiuj

∂εθ

∂xj

−
√

1

Pr

ε

k

εθ

θ2
uiθ2

]
, (4.14)

and

uiε
∗
θ = −Pr0.75CT

εθ

[
k2

ε

∂εθ

∂xj

−
√

1

Pr

ε

k

εθ

θ2
uiθ2

]
. (4.15)

In order to compare the results, we set the coefficient in models (4.14) and (4.15) to
the same value CT

εθ
= 0.7.

In figure 16(a) DNS results, for the turbulent diffusion Dt
εθ

at Pr= 0.025 are
compared with the predictions by standard models (4.2) and (4.3) and with the
predictions by the new models (4.14) and (4.15). As indicated in figure 15a, models
(4.2) and (4.3) yield qualitatively wrong results apart from the channel centre at
this Rayleigh number. The new models (4.14) and (4.15) predict Dt

εθ
well, however,

both models underpredict the minimum point. Notice that the coefficient for both
equations, (4.14) and (4.15), is taken as CT

εθ
= 0.7.

Figure 16(b) shows a similar comparison for Pr= 0.71. Standard models still show
strong deficiencies within the thermal boundary layer. In the near-wall region, these
models do not account for the sign-change, giving qualitatively wrong results at this
Rayleigh number. Model (4.15) gives good results in the channel centre and in the
near-wall region, but underpredicts the DNS result within the thermal boundary
layer. Model (4.14) reproduces the DNS results very well. This analysis shows that
model (4.14) may give a good approximation of the turbulent diffusion term Dt

εθ
for

a wide range of low-Prandtl-number flows.
Considering model (4.14) and the model equations for the temperature variance

dissipation rate as suggested by Nagano & Kim (1988) and Hanjalić (1994) results
in the complete model equation for thetemperature variance dissipation rate εθ for



Modelling of the temperature variance equation for natural convection 259

Rayleigh–Bénard convection, i.e. without mean velocities,

∂εθ

∂t
=

∂

∂xi

[
Pr0.75CT

εθ

[
k

ε
uiuj

∂εθ

∂xi

−
√

1

Pr

ε

k

εθ

θ2
uiθ2

]
+ κ

∂εθ

∂xi

]

− CP1

εθ

θ2
uiθ

∂T

∂xi

− CD1

ε2
θ

θ2
. (4.16)

CP1, CD1 are functions of the Prandtl number, Rayleigh number and of the turbulent
time scale ratio.

5. Conclusions
Based on new direct numerical simulation of turbulent Rayleigh–Bénard convection

for the Prandtl number Pr = 0.025 and the Rayleigh number Ra = 105, an analysis of
some statistical turbulence quantities has been performed. Some of the characteristics
of turbulent convection in low-Prandtl-number flows are shown and discussed. It
is found that the modelling of the turbulent heat flux for the Rayleigh–Bénard
convection by means of the turbulent Prandtl number concept has serious deficiencies.
This analysis indicates that a model of the turbulent heat flux which accounts better for
the turbulent convection in low-Prandtl-number fluids should be based on transport
equations for the heat fluxes, for the temperature variance, and for the temperature
variance dissipation rate, or at least on simplified algebraic forms of these equations.

DNS results are used for the detailed analysis of the transport equation for the
temperature variance θ2 and the transport equation for the temperature variance
dissipation rate εθ . This analysis shows the relevance of the turbulent diffusion terms
in the near-wall region and in the channel centre as well.

Based on new DNS results and on former DNS results for Pr= 0.71, Ra = 630 000,
different models for the turbulent diffusion of the temperature variance known from
the literature are investigated. This analysis shows that model-coefficients suggested
in the literature are well optimized for the case Pr =0.71. However, the analysis
shows strong quantitative deficiencies of the models for the case Pr =0.025 since
the models overpredict DNS results up to a factor of seven. These results lead to
the conclusion that the modelling of the turbulent diffusion term in the temperature
variance equation requires the explicit influence of the molecular fluid properties, and
that considering only the mechanical or only the thermal time scale is not sufficient
for approximation of turbulent diffusion in the temperature variance equation for
a wide range of Prandtl numbers. This analysis supports the conclusion that the
mixed time scale should be used for modelling of the turbulent diffusion. These
results also indicate that for Pr ∼ 1, an application of the mixed time scale in the
Hanjalić–Launder model (equation (3.5)), as given by model (3.30), may give a good
approximation of the turbulent diffusion of the temperature variance. In the case
Pr = 0.025, this approximation does not give satisfactory results since this model
(equation (3.30)) overpredicts the maxima by about 100%.

Based on the two-point correlation technique, a novel approach for modelling
of the turbulent diffusion of the temperature variance is introduced, which may
resolve this deficiency. The new modelling approach results in a Helmholtz equation
and represents a linear approximation of the nonlinear transport equation for the
turbulent diffusion. This new model (equation (3.28)) considers a mixed time scale and
explicitly considers the molecular fluid properties. Major advantages of the new model
are very good predictions for both cases (Pr = 0.025 and Pr= 0.71), and that the same
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empirical coefficient is used for both Prandtl numbers. A possible disadvantage of
the new model is induced by the Laplace operator in the Helmholtz equation since
the second derivatives may necessitate finer grids or overestimate small changes of
gradients.

Based on the DNS results for the cases Pr= 0.025 and Pr =0.71, standard models
for the turbulent diffusion of the temperature variance dissipation rate known from
the literature are investigated. This analysis shows that standard models have strong
deficiencies or fail qualitatively at the edge and within the thermal boundary layer
for the cases considered. The new modelling approach developed for the turbulent
diffusion term in the temperature variance equation is analogously applied for
modelling of the turbulent diffusion term in the temperature variance dissipation
rate equation. Major advantages of the new model (equation (4.14)) are very
satisfactory predictions for both cases (Pr = 0.025 and Pr= 0.71), while the same
empirical coefficient is used for both Prandtl numbers. An additional advantage is
a minimal increase in model complexity which makes no special demands on model
implementation into computer codes.

However, the true generality of the models based on the new modelling approach
can only be proved when they are successfully applied to different types of problems,
for example to flows in more complex domains.

This research received financial support (GR 1901) from the Deutsche
Forschungsgemeinschaft (DFG). The authors gratefully acknowledge this support.
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Grötzbach, G. 1987 Direct numerical and large eddy simulation of turbulent channel flows. In
Encyclopaedia of Fluid Mechanics (ed. N. Cheremisinoff), vol. 6, pp. 1337–1391. Gulf, Houston.
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